李雨,理学博士,讲师,东北林业大学硕士生导师
联系方式:QQ:494891084 E-mailliy@nefu.edu.cn
主要研究方向:
微分方程数值解(计算数学),该方向主要涉及微分方程的高精度数值算法的格式构造和理论分析。
教育背景:
2001.9-2005.7哈尔滨师范大学获理学学士学位
2005.9-2007.7哈尔滨工业大学获理学硕士学位
2013.9-2019.4哈尔滨工业大学获理学博士学位
工作经历:
2007.7-2013.8黑龙江八一农垦大学理学院
2019.07-至今 东北林业大学理学院、数学系
主持项目:
1.东北林业大学“5211”引进人才科研启动金项目,2019/09
2.黑龙江省博士后科研启动金项目,2022/09,在研
3.东北林业大学中央高校B类项目,项目号:2572020BC06,已结题
4.黑龙江省哲学社会科学研究规划项目,项目号:22JYE466,2022/11在研
已发表SCI论文:
1.Li Yu, Shan Wei, Zhang Yanming*. High-Order Dissipation-Preserving Methods for Nonlinear Fractional Generalized Wave Equations[J]. Fractal and Fractional, 2022, 6(5): 264.
2.Zhang Yanming, Fan Y,Li Yu*. General linear and spectral Galerkin methods for the nonlinear two-sided space distributed-order diffusion equation[J]. Computers & Mathematics with Applications, 2022, 113: 1-12.(通讯作者)
3.Wei Yufen, Guo Ying,Li Yu*.A new numerical method for solving semilinear fractional differential equation[J]. Journal of Applied Mathematics and Computing, 2022, 68(2): 1289-1311.(通讯作者)
4.Li Yu, Zhang Yanming*. An efficient numerical method for nonlinear fractional differential equations based on the generalized Mittag‐Leffler functions and Lagrange polynomials[J]. Mathematical Methods in the Applied Sciences, 2021, 44(16): 12169-12184.
5.Li Yu, Cao Yang, Fan Yan*. Generalized Mittag-Leffler quadrature methods for fractional differential equations[J]. Computational and Applied Mathematics, 2020, 39: 1-16.
6.Wei Yufen,Li Yu*. Stability Analysis of a Stage-Structure Predator–Prey Model with Holling III Functional Response and Cannibalism[J]. Axioms, 2022, 11(8): 421.(通讯作者)
7.Zhang yanming, Li Yu, Yu Yuexin, Wang Wansheng*. Implicit Runge-Kutta with spectral Galerkin methods for the fractional diffusion equation with spectral fractional Laplacian[J]. Numerical Methods for Partial Differential Equations, 2023
8.Zhao Jingjun,Li Yu,Xu Yang*. A kind of product integration scheme for solving fractional ordinary differential equations[J]. Applied Numerical Mathematics, 2019, 136: 279-292.
9.Zhao Jingjun,Li Yu, Xu Yang*. An explicit fourth-order energy-preserving scheme for Riesz space fractional nonlinear wave equations[J]. Applied Mathematics and Computation, 2019, 351: 124-138.
10.Zhao Jingjun,Li Yu, Xu Yang*. Multiderivative extended Runge–Kutta–Nyström methods for multi-frequency oscillatory systems[J]. International Journal of Computer Mathematics, 2018, 95(1): 231-254.
11.Zhao Jingjun,Li Yu,Xu Yang*. Convergence and Stability Analysis of Exponential General Linear Methods for Delay Differential Equations[J]. Numerical Mathematics: Theory, Methods & Applications, 2018, 11(2).